
Enhanced RTMP

Table of Contents
● Table of Contents
● Document Status
● Usage License
● Terminology
● Abstract
● Introduction
● Conventions
● Contextualizing Enhancements
● Simple Data Types
● RTMP Message Format
● An Overview of the FLV File Format
● Enhancements to RTMP and FLV
● Enhancing onMetaData
● Reconnect Request
● Enhanced Video
● Metadata Frame
● Multitrack Streaming via Enhanced RTMP
● Enhancing NetConnection connect Command
● Action Message Format (AMF): AMF0 and AMF3
● Protocol Versioning
● Documentation Versioning
● References
● Appendix
● Document Revision History

Document Status
Author: Slavik Lozben (Veovera Software Organization)
Contributors: Adobe, Google, Twitch, Jean-Baptiste Kempf (FFmpeg, VideoLAN), pkv
(OBS), Dennis Sädtler (OBS), Xavier Hallade (Intel Corporation), Luxoft,
SplitmediaLabs Limited (XSplit), Craig Barberich (VSO), Michael Thornburgh
Status: v2-2024-04-02-a1

Alpha Version Disclaimer for Enhanced RTMP V2
Specification

This document outlines the alpha version of the Enhanced Real-Time Messaging
Protocol (RTMP) Version 2 specification. As we refine and enhance the protocol,
there may be breaking changes introduced to this alpha version based on feedback
and further testing. Rest assured, no breaking changes will occur in the General
Availability (GA) released versions.

We encourage developers, implementers, and stakeholders to actively participate
in this development phase. Your feedback, whether it be bug reports, feature
suggestions, or usability improvements, is invaluable and can be submitted via
new issues in our GitHub repository at
<https://github.com/veovera/enhanced-rtmp>. We are committed to transparently
communicating updates and changes, ensuring that all stakeholders are informed
and involved.

Please note that engaging with this alpha version gives you a unique opportunity
to influence the final specifications of Enhanced RTMP V2. We look forward to
collaborating with you on this exciting journey towards a more robust and
efficient protocol.

Usage License
Copyright 2022-2024 Veovera Software Organization

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

<https://www.apache.org/licenses/LICENSE-2.0>

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when,

https://github.com/veovera/enhanced-rtmp
https://www.apache.org/licenses/LICENSE-2.0
https://datatracker.ietf.org/doc/html/bcp14

and only when, they appear in all capitals, as shown here. Definitions below are
reproduced from [RFC2119].

● MUST - This word, or the terms "REQUIRED" or "SHALL", means that the
definition is an absolute requirement of the specification.

● MUST NOT - This phrase, or the phrase "SHALL NOT", means that the definition
is an absolute prohibition of the specification.

● SHOULD - This word, or the adjective "RECOMMENDED", means that there may
exist valid reasons in particular circumstances to ignore a particular item,
but the full implications must be understood and carefully weighed before
choosing a different course.

● SHOULD NOT - This phrase, or the phrase "NOT RECOMMENDED", means that there
may exist valid reasons in particular circumstances when the particular
behavior is acceptable or even useful, but the full implications should be
understood and the case carefully weighed before implementing any behavior
described with this label.

● MAY - This word, or the adjective "OPTIONAL", means that an item is truly
optional. One vendor may choose to include the item because a particular
marketplace requires it or because the vendor feels that it enhances the
product while another vendor may omit the same item. An implementation which
does not include a particular option MUST be prepared to interoperate with
another implementation which does include the option, though perhaps with
reduced functionality. In the same vein an implementation which does include
a particular option MUST be prepared to interoperate with another
implementation which does not include the option (except, of course, for the
feature the option provides.)

Additionally we add the keyword [DEPRECATED] to the set of keywords above.

● DEPRECATED - This word means a discouragement of use of some terminology,
feature, design, or practice, typically because it has been superseded or is
no longer considered efficient or safe, without completely removing it or
prohibiting its use. Typically, deprecated materials are not completely
removed to ensure legacy compatibility or back-up practice in case new
methods are not functional in an odd scenario. It can also imply that a
feature, design, or practice will be removed or discontinued entirely in the
future.

Abstract
In the rapidly evolving media streaming landscape, there is a pressing need to
update legacy protocols to align with modern technological standards. The
Real-Time Messaging Protocol [RTMP] and Flash Video [FLV] file format, introduced
in 2002, have been pivotal and continue to be vital especially in live
broadcasting. Despite RTMP widespread use, it has shown signs of aging,
particularly in the lack of support for contemporary video codecs (VP8, VP9,
HEVC, AV1) and audio codecs (AC3, EAC3, Opus, FLAC). Recognizing this, Veovera

https://docs.google.com/document/d/1aY1bF3RI_TKgd-VpTEUzuWK9FEoS9i0lyXitcF_xavo/edit#heading=h.2x95bq1f401u
https://docs.google.com/document/d/1aY1bF3RI_TKgd-VpTEUzuWK9FEoS9i0lyXitcF_xavo/edit#heading=h.jpwhvwronaz9

Software Organization (VSO), in collaboration with industry giants like Adobe,
YouTube, and Twitch, and other key stakeholders, has embarked on a mission to
rejuvenate RTMP, ensuring it meets the demands of contemporary streaming needs.

This document details the comprehensive enhancements made to the RTMP and FLV
specifications, aimed at revitalizing the technology for current and future media
demands. Our strategic approach prioritizes innovation while maintaining backward
compatibility, thereby augmenting RTMP's utility without undermining existing
infrastructures. Some of the key advancements include:

● Integration of advanced video codecs (VP8, VP9, HEVC, AV1) with High Dynamic
Range (HDR) support, enhancing video quality for modern displays.

● Introduction of VideoPacketType.Metadata, broadening the scope of video
metadata.

● Implementation of video multitrack capabilities, facilitating sophisticated
media stream management.

● Establishment of a reconnect request feature, bolstering connection
stability and resilience.

These strategic enhancements position RTMP as a robust, future-proof standard in
the streaming technology arena. Veovera is committed to open collaboration and
values community input. We encourage participation in the ongoing development
process through our GitHub repository, where you can access detailed
documentation, contribute to the project, and share insights, fostering a vibrant
ecosystem around enhanced RTMP.

Our commitment to RTMP's evolution doesn't stop here. We plan to quickly follow
up these enhancements with the incorporation of leading audio codecs, such as
Opus, FLAC, AC-3, and E-AC-3, along with the development of features supporting
audio multitrack and multichannel configurations. This continuous innovation
underscores our dedication to keeping RTMP at the forefront of streaming
technology standards.

Introduction
This document describes enhancements to [RTMP] and [FLV], introducing support for
new media codecs, HDR capability, and more. A primary objective is to ensure
these enhancements do not introduce breaking changes for established clients or
the content they stream. As such, legacy [RTMP] and legacy [FLV] specifications
remain integral to the RTMP ecosystem. While this updated specification aims to
minimize redundancy with previous versions, when combined with
previous-generation documentation, it provides a comprehensive overview of the
RTMP solution. We've drawn from several legacy references, which are as follows:

● Adobe Legacy [RTMP] Specification
● Adobe Legacy [FLV] Specification
● Additional [LEGACY] Specifications

https://github.com/veovera/enhanced-rtmp

Conventions
This document employs certain conventions to convey particular meanings and
requirements. The following section outlines the notation, terminology, and
symbols used throughout to ensure clarity and consistency. These conventions
provide insight into the ethos of how the enhanced RTMP specification has been
crafted and should be interpreted.

● Enhanced RTMP: refers to a series of improvements made to the legacy
Real-Time Messaging Protocol (RTMP), originally developed by Adobe. It's
important to note that enhanced RTMP is not a brand name but a term used to
distinguish this advanced version from the legacy [RTMP] specification.
Endorsed by Adobe and widely adopted across the industry, enhanced RTMP
serves as the current standard for RTMP solutions. This updated protocol
includes various enhancements to both RTMP and the FLV format. Please be
aware that the term enhanced RTMP signifies ongoing updates to RTMP and FLV,
and does not pertain to any specific iteration or release.

● Pseudocode: Pseudocode has been provided to convey logic on how to interpret
the RTMP or FLV binary format. The code style imitates a cross between
TypeScript and C. The pseudocode was written in TypeScript and validated
using VSCode to ensure correct syntax and catch any minor typographical
errors. Below are some further explanations:

○ Enumerations are used to define valid values
○ Pseudo variables are named in a self-descriptive manner. For instance:

videoCommand = UI8 as VideoCommand

The line above indicates that an unsigned 8-bit value is read from the
bitstream. The legal values correspond to the enumerations within the
VideoCommand set, and the pseudo variable videoCommand now holds that
value.

○ The pseudocode is written from the point of view of reading (a.k.a.,
parsing) the bitstream. If you are writing the bitstream, you can swap
source with destination variables.

○ Enhanced RTMP typically employs camelCase naming conventions for
variables. In contrast, the naming convention for legacy [RTMP]
specification is usually preserved as is.

○ Handshake and Enhancing NetConnection connect command: The enhanced
RTMP specification generally prioritizes the client's perspective over
that of the server. To shift this focus and view the interaction from
the server's side, the server should echo back certain enhancement
information.

When the client informs the server of the enhancements it supports via
the connect command, the server processes this command and responds
using the same transaction ID. The server's response string will be
one of the following: _result, _error, or a specific method name. A

command string of _result or _error indicates a response rather than a
new command.

During this response, the server will include an object containing
specific properties as one of the arguments to _result. It is at this
point that the server should indicate its support for enhanced RTMP
features. Specifically, the server should denote its capabilities
through attributes such as videoFourCcInfoMap, capsEx, and other
defined properties.

○ The ethos of this pseudocode is to provide a high-level overview of
the data structures and operations taking place on the wire. While it
accurately represents the bytes being transmitted, it's important to
note that the logic is not exhaustive. Specifically, this pseudocode
does not cover all possible cases, nor does it always include items
such as initialization logic, looping logic or error-handling
mechanisms. It serves as a foundational guide that can be implemented
in various ways, depending on specific needs and constraints.

● Unrecognized value: If a value in the bitstream is not understood, the logic
must fail gracefully in a manner appropriate for the implementation.

● Table naming: Each table in the document is named according to the specific
content or subject it is describing.

● Bitstream optimization: One of the guiding principles of enhanced RTMP is to
optimize the number of bytes transmitted over the wire. While minimizing
payload overhead is a priority, it is sometimes more important to simplify
the logic or enhance extensibility. For example, although more optimal
methods for creating a codec ID than using FOURCC may exist, such approaches
could render the enhancement non-standard and more challenging to extend and
maintain in the future.

● Capitalization rules: Another guiding principle in the enhanced RTMP is the
standardization of capitalization for types. The original documentation
capitalized types such as Number, String, and Boolean, and even included
various other spellings. The enhanced RTMP adopts lowercase spelling for
terms, such as number, string, and boolean. This change emphasizes that
these types are simple, not objects.

● ECMA Array vs Object: In the world of AMF (Action Message Format), both ECMA
Array and Object are used to store collections of properties. A property is
simply a pairing of a name with a value. In enhanced RTMP, the term Object
is specifically used to indicate the Object Type. In the past, people have
sometimes used ECMA Array and Object as if they were the same thing.
However, for better coding practices, it's recommended to use Object when
you're creating AMF data. When you're reading or decoding AMF data, you
should be prepared to handle either ECMA Array or Object for greater
flexibility and robustness.

● Default values: Unless explicitly called out, there should be no assumptions
made regarding default values, such as null or undefined.

● Legacy vs. Enhanced Properties: In the documentation, an effort has been
made to distinguish between legacy properties and newly defined ones through
color coding, such as using bold text or different background colors for
enhancements. While this color coding is not guaranteed to be consistent,

the distinctions between values defined in enhanced RTMP should be readily
apparent.

● Capability flags: The capabilities flags, exchanged during a connect
handshake, may not cover all possible functionalities. For instance, a
client might indicate support for multitrack processing without specifying
its ability to encode or decode multitrack streams. In scenarios where a
client, capable of issuing a play command, declares multitrack support, it
MUST be equipped to handle the playback of such streams. Similarly, if a
client is aware of the server's multitrack capabilities, it MAY opt to
publish a multitrack stream.

Contextualizing Enhancements
In the following section, we'll outline key enhancements. The aim is to give
readers a clear snapshot of the enhanced RTMP objectives and intentions before
diving into the rest of the detailed specifications.

● Newly introduced codecs

Table: Additional codecs for RTMP
Additional Video Codec Notes

AVC (a.k.a., H.264, added FOURCC signaling)

Popular within streaming hardware and software solutions.
HEVC (a.k.a., H.265)

VP8 (webRTC officially supports this codec)

VP9

AV1
● Gaining popularity
● Codec agnostic services are asking for AV1 support

● HDR - to accommodate new video codecs and cater to the existing spectrum of
displays

● VideoPacketType.Metadata - to accommodate diverse video metadata types
● Multitrack - to provide the ability to manage or process multiple video

tracks
● and more…

Simple Data Types
The following data types are used in RTMP bitstreams and FLV files. FOURCC was
introduced to support enhanced RTMP and FLV.

Table: Simple data types
Type Definition

0x... Hexadecimal value

UB[n] Bit field with unsigned n-bit integer, where n is in the range 1 to 31,
excluding 8, 16, 24

FOURCC Four-character ASCII code, such as ‘av01’, encoded as UI32

SI8 Signed 8-bit integer

SI16 Signed 16-bit integer

SI24 Signed 24-bit integer

SI32 Signed 32-bit integer

UI8 Unsigned 8-bit integer

UI16 Unsigned 16-bit integer

UI24 Unsigned 24-bit integer

UI32 Unsigned 32-bit integer

xxx[] Array of type xxx. Number of elements to be inferred

xxx[n] Array of n elements of type xxx

[xxx] Array of one element of type xxx

Note: Unless specifically called out, multi-byte integers SHALL be stored in
big-endian byte order

RTMP Message Format
Adobe's Real-Time Messaging Protocol (RTMP) is an application-level protocol
designed for the multiplexing and packetizing of multimedia streams—such as
audio, video, and interactive content, for transmission over network protocols
like TCP. A fundamental feature of RTMP is the Chunk Stream, which facilitates
the multiplexing, packetizing, and prioritization of messages, integral to the
protocol's real-time capabilities.

The legacy [RTMP] specification in Section 6.1 elaborates on the RTMP Message
Format, providing precise encoding guidelines for the RTMP message header,
inclusive of field widths and byte order. However, this portrayal might be
somewhat confusing because RTMP messages, when transported over the Chunk Stream,
don't literally conform to this depicted format. An RTMP Message is divided into
two principal components: a message virtual header and a message payload. The
'virtual' descriptor indicates that while RTMP messages are carried within the
RTMP Chunk Stream, their headers are conceptually encoded as Chunk Message
Headers. When these are decoded from the RTMP Chunk Stream, the underlying
transport layer, the resulting format is to be understood as a virtual header.
This abstract representation aligns with the structured format and semantics
detailed in the legacy [RTMP] specification. Detailed next is the format of the
message virtual header and some additional related information.

● Message virtual header
```
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|MessageType ID | Payload length |
| (1 byte) | (3 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

https://veovera.github.io/enhanced-rtmp/docs/legacy/rtmp-v1-0-spec.pdf#page=22


| Timestamp |
| (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stream ID |
| (3 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

● There are two message types reserved for media messages:
○ The message type value of 8 is reserved for audio message
○ The message type value of 9 is reserved for video messages

● The message payload follows the header and may contain various types of
content, such as compressed audio or video data. RTMP itself does not
recognize or process the payload's content. If new codec types are to be
added, they must be defined where the actual payload internals are outlined.
FLV is a container file format where the specifics of the AV payload,
including the codecs, are defined.

● Please refer to the legacy [RTMP] specification (in various locations) and
the legacy [FLV] specification (Annex E) for details on the endianness
(a.k.a., byte order) of the data format on the wire.

An Overview of the FLV File Format
FLV file is a container for AV (Audio and Video) data. The file consists of
alternating back-pointers and tags, each accompanied by data related to that tag.
Each TagType within a FLV file is unsigned and defined by 5 bits. AUDIODATA has a
TagType of 8, and VIDEODATA has a TagType of 9. Note: These TagTypes map to the
same values of MessageType ID, defined by UI8, in the legacy [RTMP]
specification. This alignment is by design.

Tag Types of 8 or 9 are accompanied by an AudioTagHeader or VideoTagHeader. It's
common to think of RTMP in conjunction with FLV. However, RTMP is a protocol, and
FLV is a file container. This distinction is why they are originally defined in
separate specifications. This enhancement spec aims to improve both RTMP and FLV.

Pre 2023 AudioTagHeader Format
Below is the AudioTagHeader format for the pre 2023 (a.k.a., legacy) FLV
specification:

Table: [FLV] specification AudioTagHeader
Field Type Comment

SoundFormat UB[4]

Format of SoundData. The following values ​​are defined:
0 = Linear PCM, platform endian
1 = ADPCM
2 = MP3
3 = Linear PCM, little endian
4 = Nellymoser 16 kHz mono
5 = Nellymoser 8 kHz mono
6 = Nellymoser

https://veovera.github.io/enhanced-rtmp/docs/legacy/video-file-format-v10-1-spec.pdf#page=76

7 = G.711 A-law logarithmic PCM
8 = G.711 mu-law logarithmic PCM
9 = Reserved
10 = AAC
11 = Speex
12 = Reserved
13 = Reserved
14 = MP3 8 kHz
15 = Device-specific sound
Formats 7, 8, 14, and 15 are reserved.
AAC is supported in Flash Player 9,0,115,0 and higher.
Speex is supported in Flash Player 10 and higher.

SoundRate UB[2]

Sampling rate. The following values ​​are defined:
0 = 5.5 kHz
1 = 11 kHz
2 = 22 kHz
3 = 44 kHz

SoundSize UB[1]

Size of each audio sample. This parameter only pertains to
uncompressed formats. Compressed formats always decode
to 16 bits internally.
0 = 8-bit samples
1 = 16-bit samples

SoundType UB[1] Mono or stereo sound 0 = Mono sound
1 = Stereo sound

AACPacketType IF SoundFormat == 10
UI8

The following values are defined: 0 = AAC sequence header
1 = AAC raw

Pre 2023 VideoTagHeader Format
Below is the VideoTagHeader format for the pre 2023 (a.k.a., legacy) FLV
specification:

Table: [FLV] specification VideoTagHeader
Field Type Comment

Frame Type UB[4]

Type of video frame. The following values ​​are defined:
1 = key frame (for AVC, a seekable frame)
2 = inter frame (for AVC, a non-seekable frame)
3 = disposable inter frame (H.263 only)
4 = generated key frame (reserved for server use only)
5 = video info/command frame

CodecID UB[4]

Codec Identifier. The following values ​​are defined:
2 = Sorenson H.263
3 = Screen video
4 = On2 VP6
5 = On2 VP6 with alpha channel
6 = Screen video version 2
7 = AVC

AVCPacketType IF CodecID == 7
UI8

The following values ​​are defined:
0 = AVC sequence header
1 = AVC NALU
2 = AVC end of sequence (lower level NALU sequence ender is
not REQUIRED or supported)

https://veovera.github.io/enhanced-rtmp/docs/legacy/video-file-format-v10-1-spec.pdf#page=78

CompositionTime IF CodecID == 7
SI24

IF AVCPacketType == 1
Composition time offset

ELSE
0

See ISO 14496-12, 8.15.3 for an explanation of composition
times. The offset in an FLV file is always in milliseconds.

Enhancements to RTMP and FLV
Within the following sections, this document provides a comprehensive overview of
the enhancements made to RTMP and FLV. These improvements are discussed in
detail, highlighting their impact and benefits.

Enhancing onMetaData
FLV metadata SHALL be encapsulated within a SCRIPTDATA segment, which includes a
ScriptTagBody encoded in the Action Message Format (AMF). Importantly, this
metadata SHALL always remain unencrypted, even when the FLV content itself is
encrypted. This design choice is essential for allowing various FLV parsers to
successfully stream the FLV content and for enabling media players to provide
contextual information to the user.

The ScriptTagBody is structured to encapsulate method invocations. It consists of
an item containing a method name (e.g., onMetaData) along with a corresponding
set of arguments.

To signal FLV metadata, the item within the ScriptTagBody MUST encapsulate the
method name onMetaData, along with a single argument of type ECMA array. This
array holds metadata properties, the availability of which may vary depending on
the software used to create the FLV. Typical onMetaData argument properties
include, but are not limited to:

Table: Typical properties found in the onMetaData argument object
Property Type Comment

audiocodecid number Audio codec ID used in the file: See AudioTagHeader of the legacy [FLV]
specification for available CodecID values.

audiodatarate number Audio bitrate, in kilobits per second

audiodelay number Delay introduced by the audio codec, in seconds

audiosamplerate number Frequency at which the audio stream is replayed

audiosamplesize number Resolution of a single audio sample

canSeekToEnd boolean Indicating the last video frame is a key frame

creationdate string Creation date and time

duration number Total duration of the file, in seconds

filesize number Total size of the file, in bytes

framerate number Number of frames per second

https://veovera.github.io/enhanced-rtmp/docs/legacy/video-file-format-v10-1-spec.pdf#page=80
https://veovera.github.io/enhanced-rtmp/docs/legacy/video-file-format-v10-1-spec.pdf#page=80
https://veovera.github.io/enhanced-rtmp/docs/legacy/video-file-format-v10-1-spec.pdf#page=76
https://docs.google.com/document/d/1aY1bF3RI_TKgd-VpTEUzuWK9FEoS9i0lyXitcF_xavo/edit?pli=1#bookmark=id.patxitqtf4iq

height number Height of the video, in pixels

stereo boolean Indicates stereo audio

videocodecid number Video codec ID used in the file: See VideoTagHeader of the legacy [FLV]
specification for available CodecID values.

When [FourCC] is used to signal the codec, this property is set to a FOURCC
value. Note: A FOURCC value is big endian relative to the underlying ASCII
character sequence (e.g., 'av01' == 0x61763031 == 1635135537.0).

videodatarate number Video bitrate, in kilobits per second

width number Width of the video, in pixels

Note: The property videocodecid has been enhanced to support FOURCC (Four-byte
ASCII code) values. These values are interpreted as UI32 (e.g., 'av01').

Reconnect Request

Objective
RTMP packetizes multimedia streams using a suitable transport protocol, typically
a persistent TCP connection. There are instances when a streaming platform may
request the streaming client to reconnect, such as:

● When live streaming servers undergo updates.
● When there's a need to redirect the client to a different server instance,

ensuring optimal load balancing and precise geolocation mapping.

To accommodate these needs, a NetConnection.Connect.ReconnectRequest status event
has been introduced as part of the NetConnection onStatus command.

NetConnection Commands
NetConnection establishes a bidirectional link between a client and a server,
allowing for asynchronous Remote Procedure Calls (RPCs). The following commands
(a.k.a., predefined RPCs) can be issued via NetConnection:

● connect
● createStream
● deleteStream
● onStatus

The onStatus command has been enhanced to include the capability to request a
client to reconnect. Servers can issue an onStatus command to prompt clients to
adapt to changes in NetConnection status. The structure of this command, as
relayed from the server to the client, is outlined below:

Table: Server to client, NetConnection onStatus command

https://veovera.github.io/enhanced-rtmp/docs/legacy/video-file-format-v10-1-spec.pdf#page=78

Field Name Type Description

Command Name string Name of the command. Set to “onStatus”

Transaction ID number Transaction ID set to 0. (i.e., no response needed)

Command Object null There is no command object for onStatus command.

Info Object Object An AMF-encoded object, the properties of which are utilized by the onStatus command. The Info
Object provides information about the status of the current connection.

The following is a description of AMF-encoded name-value pairs in the Info Object
for the onStatus command when handling reconnect. It MAY contain other properties
as appropriate to the client.

Table: Info Object parameter for onStatus command when handling reconnect
Property Type Description Example Value

tcUrl
(optional)

string Absolute or relative URI reference of the server to which to
reconnect. If not specified, use the tcUrl for the current
connection. A relative URI reference should be resolved
relative to the tcUrl for the current connection.

1. rtmp://foo.mydomain.com:1935/realtimeapp
2. rtmp://127.0.0.1/realtimeapp
3. //192.0.2.0/realtimeapp
4. /realtimeapp

code string A string identifying the event that occurred. To reconnect
code MUST be set to “NetConnection.Connect.ReconnectRequest”

NetConnection.Connect.ReconnectRequest

description
(optional)

string A string containing human-readable information about the
message. Not every information object includes this
property.

The streaming server is undergoing updates.

level string A string indicating the severity of the event. To reconnect
the level MUST be set to “status”.

status

Message Flow When Handling
NetConnection.Connect.ReconnectRequest

1. Prior to the shutdown of the live streaming server or when the server
intends to remap the client to another server instance, it dispatches an
onStatus command to the client with a code of
NetConnection.Connect.ReconnectRequest. If the server aims to remap the
client, it MUST set the tcUrl property in the Info Object. In order to avoid
a disruption, the server managing the original connection (commonly referred
to as the "old server") SHOULD continue processing messages from the client
until the client disconnects.

2. When the client receives the NetConnection.Connect.ReconnectRequest event,
it persists in streaming to/from the current server up to the next
appropriate media boundary, such as a keyframe. Subsequently, it establishes
a connection with a new server and disconnects from the old server. If the
Info Object includes the tcUrl property, the client uses this URL for the
reconnection process. Absent this property, the client defaults to the tcUrl
for the current connection.

3. While the client can establish a new connection before severing the original
one, it SHOULD exercise caution to ensure the Quality of Service (QoS) is
not compromised.

The capability to support the NetConnection.Connect.ReconnectRequest event
becomes evident during the initial connect phase. Detailed guidelines for
signaling reconnect ability can be found in the Enhancing NetConnection connect
Command section.

Detailed Overview of the onStatus Command for
NetConnection
The server-to-client onStatus command for NetConnection, serves a crucial
function within the RTMP framework. Though the legacy [RTMP] specification may
not have detailed this command, the goal here is to offer an overview for a
better understanding.

Both clients and servers can initiate RPCs at the receiving end, with some RPCs
being predefined as commands. onStatus stands out as one such essential command.

When using the onStatus command, the goal is to inform the client about the
status of the connection. Each dispatched command message comprises the following
elements:

● Command Name: type string
● Transaction ID: type number
● Command Object (set to null when dispatching an onStatus command): type

Object
● Info Object (which can be viewed as Optional Arguments): type Object

Both the Command Object and the Info Object offer additional context and details
for the command. The onStatus command is triggered whenever there's a status
change or an error concerning the NetConnection. To handle this information, you
should define a callback function.
```js
// Sample pseudocode for the onStatus callback function
nc.onStatus = function(infoObject) {
// Handle the status change or error here.

}
```
infoObject is an AMF-encoded object with properties that provide information
about the status of a NetConnection. It contains at least the following three
properties, but MAY contain other properties as appropriate to the client.

Table: infoObject for onStatus command
Property Type Description Example Value

code string A string identifying the event that occurred. NetConnection.Connect.Success

description
(optional)

string A string containing human-readable information about the
message. Not every information object includes this
property.

The connection attempt succeeded.

level string There are three established values for level: "status",
"warning", and "error".

status

The table below provides examples of code, level, and description property
values. Please note that this is not an exhaustive list, and not all entries may
apply to every type of client. Additionally, the description property values
included are merely illustrative examples; developers are responsible for
conveying the appropriate meaning in their specific solutions.

Table: code, level and description values for infoObject used by onStatus
Code Level Description

NetConnection.Call.Failed error The NetConnection.call() method was not able to invoke the server-side method or command.

NetConnection.Connect.AppShutdown error The application has been shut down (for example, if the application is out of memory resources
and must shut down to prevent the server from crashing) or the server has shut down.

NetConnection.Connect.Closed status The connection was closed successfully.

NetConnection.Connect.Failed error The connection attempt failed.

NetConnection.Connect.Rejected error The client does not have permission to connect to the application.

NetConnection.Connect.Success status The connection attempt succeeded.

NetConnection.Connect.ReconnectRequest status The server is requesting the client to reconnect.

NetConnection.Proxy.NotResponding error The proxy server is not responding. See the ProxyStream class.

Enhanced Video
The VideoTagHeader has been extended to define additional video codecs,
multitrack capabilities, additional miscellaneous enhancements, and signaling
support, while ensuring backward compatibility. This extension is termed the
ExVideoTagHeader and is designed to be future-proof, allowing for the definition
of additional video codecs, features, and corresponding signaling.

During the parsing process, the logic MUST handle unexpected or unknown elements
gracefully. Specifically, if any critical signaling or flags (e.g.,
VideoFrameType, VideoPacketType, or VideoFourCc) are not recognized, the system
MUST fail in a controlled and predictable manner.

IMPORTANT: A single video message for a unique timestamp may include a batch of
VideoPacketType values (e.g., multiple TrackId values, Metadata values). When
parsing a video message, the bitstream MUST be processed completely to ensure all
payload data has been handled.

Table: Extended VideoTagHeader
Description Of Bitstream Enumerated Types

// Check if isExVideoHeader flag is set to 1, signaling enhanced RTMP
// video mode. In this case, VideoCodecId's 4-bit unsigned binary (UB[4])
// should not be interpreted as a codec identifier. Instead, these
// UB[4] bits should be interpreted as VideoPacketType.
isExVideoHeader = UB[1]
videoFrameType = UB[3] as VideoFrameType

if (isExVideoHeader == 0) {
// Utilize the VideoCodecId values and the bitstream description

enum VideoFrameType {
// 0 - reserved
KeyFrame = 1, // a seekable frame
InterFrame = 2, // a non - seekable frame
DisposableInterFrame = 3, // H.263 only
GeneratedKeyFrame = 4, // reserved for server use only

// If videoFrameType is not ignored and is set to VideoFrameType.Command,
// the payload will not contain video data. Instead, (Ex)VideoTagHeader

// as defined in the legacy [FLV] specification. Refer to this
// version for the proper implementation details.
videoCodecId = UB[4] as VideoCodecId

if (videoFrameType == VideoFrameType.Command) {
videoCommand = UI8 as VideoCommand

}
}

// will be followed by a UI8, representing the following meanings:
//
// 0 = Start of client-side seeking video frame sequence
// 1 = End of client-side seeking video frame sequence
//
// frameType is ignored if videoPacketType is VideoPacketType.MetaData
Command = 5, // video info / command frame

// 6 = reserved
// 7 = reserved

}

enum VideoCommand {
StartSeek = 0,
EndSeek = 1,

// 0x03 = reserved
// ...
// 0xff = reserved

}

enum VideoCodecId {
// These values remain as they were in the legacy [FLV] specification.
// If the IsExVideoHeader flag is set, we switch into
// FOURCC video mode defined in the VideoFourCc enumeration.
// This means that VideoCodecId (UB[4] bits) is not interpreted
// as a codec identifier. Instead, these UB[4] bits are
// interpreted as VideoPacketType.

// 0 - Reserved
// 1 - Reserved
SorensonH263 = 2,
Screen = 3,
On2VP6 = 4,
On2VP6A = 5, // with alpha channel
ScreenV2 = 6,
Avc = 7,
// 8 - Reserved
// ...
// 15 - Reserved

}

ExVideoTagHeader Section
note: ExVideoTagHeader is present if IsExVideoHeader flag is set.

Description Of Bitstream Enumerated Types

//
// process ExVideoTagHeader
//
processVideoBody = false
if (isExVideoHeader == 1) {
processVideoBody = true

// The UB[4] bits are interpreted as VideoPacketType
// instead of VideoCodecId
videoPacketType = UB[4] as VideoPacketType

if (videoPacketType != VideoPacketType.Metadata &&
videoFrameType == VideoFrameType.Command) {
videoCommand = UI8 as VideoCommand

enum VideoPacketType {
SequenceStart = 0,
CodedFrames = 1,
SequenceEnd = 2,

// CompositionTime Offset is implicitly set to zero. This optimization
// avoids transmitting an SI24 composition time value of zero over the wire.
// See the ExVideoTagBody section below for corresponding pseudocode.
CodedFramesX = 3,

// ExVideoTagBody does not contain video data. Instead, it contains
// an AMF-encoded metadata. Refer to the Metadata Frame section for
// an illustration of its usage. For example, the metadata might include
// HDR information. This also enables future possibilities for expressing
// additional metadata meant for subsequent video sequences.

// ExVideoTagBody has no payload if we got here.
// Set boolean to not try to process the video body.
processVideoBody = false

} else if (videoPacketType == VideoPacketType.Multitrack) {
isVideoMultitrack = true;
videoMultitrackType = UB[4] as AvMultitrackType

// Fetch VideoPacketType for all video tracks in the video message.
// This fetch MUST not result in a VideoPacketType.Multitrack
videoPacketType = UB[4] as VideoPacketType

if (videoMultitrackType != AvMultitrackType.ManyTracksManyCodecs) {
// The tracks are encoded with the same codec. Fetch the FOURCC for them
videoFourCc = FOURCC as VideoFourCc

}
} else {
videoFourCc = FOURCC as VideoFourCc

}
}

//
// If VideoPacketType.Metadata is present, the FrameType flags
// at the top of this table should be ignored.
Metadata = 4,

// Carriage of bitstream in MPEG-2 TS format
//
// PacketTypeSequenceStart and PacketTypeMPEG2TSSequenceStart
// are mutually exclusive
MPEG2TSSequenceStart = 5,

// Turns on video multitrack mode
Multitrack = 6,

// 7 - Reserved
// ...
// 14 - reserved
// 15 - reserved

}

enum VideoFourCc {
//
// Valid FOURCC values for signaling support of video codecs
// in the enhanced FourCC pipeline. In this context, support
// for a FourCC codec MUST be signaled via the enhanced
// 'connect' command.
//

Av1 = makeFourCc('av01'),
Vp8 = makeFourCc('vp08'),
Vp9 = makeFourCc('vp09'),
Hevc = makeFourCc('hvc1'),
Avc = makeFourCc('avc1'),

}

enum AvMultitrackType {
//
// Used by audio and video pipeline
//

OneTrack = 0,
ManyTracks = 1,
ManyTracksManyCodecs = 2,

// 3 - Reserved
// ...
// 15 - Reserved

}

ExVideoTagBody Section
Note: This ExVideoTagBody format is signaled by the presence of ExVideoTagHeader and if videoCommand has not been set (see VideoFrameType description)

Description Of Bitstream

//
// process ExVideoTagBody
//
while (processVideoBody) {
if (isVideoMultitrack) {
if (videoMultitrackType == AvMultitrackType.ManyTracksManyCodecs) {
// Each track has a codec assigned to it. Fetch the FOURCC for the next track.
videoFourCc = FOURCC as VideoFourCc

}

// Track Ordering:
//
// For identifying the highest priority (a.k.a., default track)
// or highest quality track, it is RECOMMENDED to use trackId
// set to zero. For tracks of lesser priority or quality, use
// multiple instances of trackId with ascending numerical values.
// The concept of priority or quality can have multiple
// interpretations, including but not limited to bitrate,
// resolution, default angle, and language. This recommendation
// serves as a guideline intended to standardize track numbering
// across various applications.
videoTrackId = UI8

if (videoMultitrackType != AvMultitrackType.OneTrack) {
// The 'sizeOfVideoTrack' specifies the size in bytes of the
// current track that is being processed. This size starts
// counting immediately after the position where the 'sizeOfVideoTrack'
// value is located. You can use this value as an offset to locate the
// next video track in a multitrack system. The data pointer is
// positioned immediately after this field. Depending on the MultiTrack
// type, the offset points to either a 'fourCc' or a 'trackId.'
sizeOfVideoTrack = UI24

}
}

if (videoPacketType == VideoPacketType.Metadata) {
// The body does not contain video data; instead, it consists of AMF-encoded
// metadata. The metadata is represented by a series of [name, value] pairs.
// Currently, the only defined [name, value] pair is ["colorInfo", Object].
// See the Metadata Frame section for more details on this object.
//
// For a deeper understanding of the encoding, please refer to the descriptions
// of SCRIPTDATA and SCRIPTDATAVALUE in the [FLV] file specification.
videoMetadata = [VideoMetadata]

}

if (videoPacketType == VideoPacketType.SequenceEnd) {
// signals end of sequence

}

if (videoPacketType == VideoPacketType.SequenceStart) {
if (videoFourCc == VideoFourCc.Vp8) {
// body contains a VP8 configuration record to start the sequence
vp8Header = [VPCodecConfigurationRecord]

}

if (videoFourCc == VideoFourCc.Vp9) {
// body contains a VP9 configuration record to start the sequence
vp9Header = [VPCodecConfigurationRecord]

}

if (videoFourCc == VideoFourCc.Av1) {
// body contains a configuration record to start the sequence
av1Header = [AV1CodecConfigurationRecord]

}

if (videoFourCc == VideoFourCc.Avc) {
// body contains a configuration record to start the sequence. See ISO

https://veovera.github.io/enhanced-rtmp/docs/legacy/video-file-format-v10-1-spec.pdf#page=80
https://docs.google.com/document/d/1aY1bF3RI_TKgd-VpTEUzuWK9FEoS9i0lyXitcF_xavo/edit?pli=1#bookmark=id.patxitqtf4iq
https://www.webmproject.org/vp9/mp4/#vp-codec-configuration-box
https://www.webmproject.org/vp9/mp4/#vp-codec-configuration-box
https://aomediacodec.github.io/av1-isobmff/#av1codecconfigurationbox-section

// 14496-15, 5.2.4.1 for the description of AVCDecoderConfigurationRecord
avcHeader = [AVCDecoderConfigurationRecord]

}

if (videoFourCc == VideoFourCc.Hevc) {
// body contains a configuration record to start the sequence. See ISO
// ISO 14496-15, 8.3.3.1.2 for the description of HEVCDecoderConfigurationRecord
hevcHeader = [HEVCDecoderConfigurationRecord]

}
}

if (videoPacketType == VideoPacketType.MPEG2TSSequenceStart) {
if (videoFourCc == VideoFourCc.Av1) {
// body contains a video descriptor to start the sequence
av1Header = [AV1VideoDescriptor]

}
}

if (videoPacketType == VideoPacketType.CodedFrames) {
if (videoFourCc == VideoFourCc.Vp8) {
// body contains series of coded full frames
vp8CodedData = [Vp8CodedData]

}

if (videoFourCc == VideoFourCc.Vp9) {
// body contains series of coded full frames
vp9CodedData = [Vp9CodedData]

}

if (videoFourCc == VideoFourCc.Av1) {
// body contains one or more OBUs which represent a single temporal unit
av1CodedData = [Av1CodedData]

}

if (videoFourCc == VideoFourCc.Avc) {
// See ISO 14496-12, 8.15.3 for an explanation of composition times.
// The offset in an FLV file is always in milliseconds.
compositionTimeOffset = SI24

// Body contains one or more NALUs; full frames are required
avcCodedData = [AvcCodedData]

}

if (videoFourCc == VideoFourCc.Hevc) {
// See ISO 14496-12, 8.15.3 for an explanation of composition times.
// The offset in an FLV file is always in milliseconds.
compositionTimeOffset = SI24

// Body contains one or more NALUs; full frames are required
hevcData = [HevcCodedData]

}
}

if (VideoPacketType.CodedFramesX) {
// compositionTimeOffset is implied to equal zero. This is
// an optimization to save putting SI24 value on the wire

if (videoFourCc == VideoFourCc.Avc) {
// Body contains one or more NALUs; full frames are required
avcCodedData = [AvcCodedData]

https://aomediacodec.github.io/av1-mpeg2-ts/#av1-video-descriptor

}

if (videoFourCc == VideoFourCc.Hevc) {
// Body contains one or more NALUs; full frames are required
hevcData = [HevcCodedData]

}
}

if (isVideoMultitrack &&
videoMultitrackType != AvMultitrackType.OneTrack &&
positionDataPtrToNextVideoTrack(sizeOfVideoTrack)) {
// positionDataPtrToNextVideoTrack() is for developer to write
continue

}

// done processing video message
break

}

Metadata Frame
To support various types of video metadata, the legacy [FLV] specification has
been enhanced. The VideoTagHeader has been extended to define a new
VideoPacketType.Metadata (see ExVideoTagHeader table in Enhanced Video section)
whose payload will contain an AMF-encoded metadata. The metadata will be
represented by a series of [name, value] pairs. For now the only defined [name,
value] pair is [“colorInfo”, Object]. When leveraging PacketTypeMetadata to
deliver HDR metadata, the metadata MUST be sent prior to the video sequence,
scene, frame or such that it affects. Each time a new colorInfo object is
received it invalidates and replaces the current one. To reset to the original
color state you can send colorInfo with a value of Undefined (the RECOMMENDED
approach) or an empty object (i.e., {}).

It is intentional to leverage a video message to deliver PacketTypeMetadata
instead of other RTMP Message types. One benefit of leveraging a video message is
to avoid any racing conditions between video messages and other RTMP message
types. Given this, once your colorInfo object is parsed, the read values MUST be
processed in time to affect the first frame of the video section which follows
the colorInfo object.

The colorInfo object provides HDR metadata to enable a higher quality image
source conforming to BT.2020 (a.k.a., Rec. 2020) standard. The properties of the
colorInfo object, which are encoded in an AMF message format, are defined below.

Note:
● For content creators: Whenever it behooves to add video hint information via

metadata (ex. HDR) to the FLV container it is RECOMMENDED to add it via
VideoPacketType.Metadata. This may be done in addition (or instead) to
encoding the metadata directly into the codec bitstream.

● The object encoding format (i.e., AMF0 or AMF3) is signaled during the
connect command.

```js
type ColorInfo = {
colorConfig: {
// number of bits used to record the color channels for each pixel
bitDepth: number, // SHOULD be 8, 10 or 12

//
// colorPrimaries, transferCharacteristics and matrixCoefficients are defined
// in ISO/IEC 23091-4/ITU-T H.273. The values are an index into
// respective tables which are described in “Colour primaries”,
// "Transfer characteristics" and "Matrix coefficients" sections.
// It is RECOMMENDED to provide these values.
//

// indicates the chromaticity coordinates of the source color primaries
colorPrimaries: number, // enumeration [0-255]

// opto-electronic transfer characteristic function (ex. PQ, HLG)
transferCharacteristics: number, // enumeration [0-255]

// matrix coefficients used in deriving luma and chroma signals
matrixCoefficients: number, // enumeration [0-255]

},

hdrCll: {
//
// maximum value of the frame average light level
// (in 1 cd/m2) of the entire playback sequence
//
maxFall: number, // [0.0001-10000]

//
// maximum light level of any single pixel (in 1 cd/m2)
// of the entire playback sequence
//
maxCLL: number, // [0.0001-10000]

},

//
// The hdrMdcv object defines mastering display (i.e., where
// creative work is done during the mastering process) color volume (a.k.a., mdcv)
// metadata which describes primaries, white point and min/max luminance. The
// hdrMdcv object SHOULD be provided.
//
// Specification of the metadata along with its ranges adhere to the
// ST 2086:2018 - SMPTE Standard (except for minLuminance see
// comments below)
//
hdrMdcv: {
//
// Mastering display color volume (mdcv) xy Chromaticity Coordinates within CIE
// 1931 color space.
//
// Values SHALL be specified with four decimal places. The x coordinate SHALL
// be in the range [0.0001, 0.7400]. The y coordinate SHALL be
// in the range [0.0001, 0.8400].
//

https://veovera.github.io/enhanced-rtmp/original-rtmp-related-specs/rtmp-v1-0-spec.pdf#page=29


redX: number,
redY: number,
greenX: number,
greenY: number,
blueX: number,
blueY: number,
whitePointX: number,
whitePointY: number,

//
// max/min display luminance of the mastering display (in 1 cd/m2 ie. nits)
//
// note: ST 2086:2018 - SMPTE Standard specifies minimum display mastering
// luminance in multiples of 0.0001 cd/m2.
//
// For consistency we specify all values
// in 1 cd/m2. Given that a hypothetical perfect screen has a peak brightness
// of 10,000 nits and a black level of .0005 nits we do not need to
// switch units to 0.0001 cd/m2 to increase resolution on the lower end of the
// minLuminance property. The ranges (in nits) mentioned below suffice
// the theoretical limit for Mastering Reference Displays and adhere to the
// SMPTE ST 2084 standard (a.k.a., PQ) which is capable of representing full gamut
// of luminance level.
//
maxLuminance: number, // [5-10000]
minLuminance: number, // [0.0001-5]

},
}
```
Table: Flag values for the videoFunction property

Function Flag Usage Value

SUPPORT_VID_CLIENT_SEEK Indicates that the client can perform frame-accurate seeks. 0x0001

SUPPORT_VID_CLIENT_HDR Indicates that the client has support for HDR video. Note: Implies
support for colorInfo Object within VideoPacketType.Metadata.

0x0002

SUPPORT_VID_CLIENT_VIDEO_PACKET_TYPE_METADATA Indicates that the client has support for VideoPacketType.Metadata.
See Metadata Frame section for more detail.

0x0004

SUPPORT_VID_CLIENT_LARGE_SCALE_TILE The large-scale tile allows the decoder to extract only an
interesting section in a frame without the need to decompress the
entire frame. Support for this feature is not required and is
assumed to not be implemented by the client unless this property is
present and set to true.

0x0008

Multitrack Streaming via Enhanced RTMP

Enhanced RTMP has introduced support for multitrack streaming, offering increased
flexibility in audio and video streaming through the use of a track index
(a.k.a., trackId). This feature allows for the serialization of multiple tracks
over a single RTMP connection and stream channel.

It's important to note that multitrack support is designed to augment, not
replace, the option of using multiple streams for streaming. While both multiple
streams and multitrack can potentially address the same use cases, the choice

between them will depend on the specific capabilities of your RTMP implementation
and requirements. In certain cases, multitrack may not be the most efficient
option.

Sample Multitrack Use Cases
● Adaptive Bitrate Streaming: Multitrack support allows the client to send

Adaptive Bitrate (ABR) ladders, thus avoiding the need for server-side
transcoding and reducing quality loss. This also facilitates sending content
with multiple codecs like AV1, HEVC, and VP9.

● Device Specific Streaming: The feature allows for the streaming of different
aspect ratios, tailored for various device profiles, enabling more dynamic
and flexible presentations.

● Frame-Level Synchronization: For example, you can synchronize multiple
camera views in a concert.

Additional Multitrack Details
● Video Messages: Each video message should include a trackId (refer to the

videoPacketType.Multitrack entry in the ExVideoTagHeader table within the
Enhanced Video section for video bitstream signaling) as it is not
persistent across messages.

● Payload Parsing: All tracks within a single timestamp must be processed to
ensure comprehensive media handling.

● Track Ordering: For identifying the highest priority (a.k.a., default track)
or highest quality track, it is RECOMMENDED to use trackId set to zero. For
tracks of lesser priority or quality, use multiple instances of trackId with
ascending numerical values. The concept of priority or quality can have
multiple interpretations, including but not limited to bitrate, resolution,
default angle, and language. This recommendation serves as a guideline
intended to standardize track numbering across various applications.

General Guidelines
Multitrack capabilities in enhanced RTMP offer a wide range of possibilities,
from adaptive bitrate streaming to multi-language support. While this document
doesn't prescribe specific encoding rules or manifest metadata, it aims to guide
you through the complexities of leveraging multitrack features. Consider various
parameters like codecs, frame rates, key frames, sampling rates, and resolutions
to meet your unique objectives. Remember, media encoding settings are separate
from Enhanced RTMP configurations.

Enhancing NetConnection connect Command
When a client connects to an RTMP server, it sends a connect command to the
server. The command structure sent from the client to the server contains a
Command Object, comprising name-value pairs. This is where the client indicates
the video codecs it supports. To declare support for newly defined codecs or
other enhancements supported by the client, this name-value pair list must be
extended. Below is the description of a new name-value pair used in the Command
Object of the connect command.

Table: New name-value pair that can be set in the Command Object
Property Type Description Example Value

fourCcList Strict Array of strings Used to declare the enhanced list of supported codecs when
connecting to the server. The fourCcList property is a strict array
of dense ordinal indices. Each entry in the array is of string
type, specifically a [FourCC] value (i.e., a string that is a
sequence of four bytes), representing a supported video codec.

In the context of enhanced RTMP, clients capable of receiving any
codec (e.g., recorders or forwarders) may set a FourCC value to the
wildcard value of '*'.

Note: The fourCcList property was introduced in the original
enhanced RTMP. Going forward, it is RECOMMENDED on the client side
to switch to using the videoFourCcInfoMap properties described
below. On the server side, we RECOMMEND supporting both fourCcList
and videoFourCcInfoMap properties to handle cases where a client
has not yet transitioned to using the new properties.

e.g., 1
[‘av01’, ‘vp09, ‘hvc1’, ‘Avc1’]

e.g., 2
[*]

videoFourCcInfoMap Object The videoFourCcInfoMap property is designed to enable setting
capability flags for each supported codec in the context of
enhanced RTMP streaming. A FourCC key is a four-character code used
to specify a video codec. The names of the object properties are
strings that correspond to these FourCC keys. Each object property
holds a numeric value that represents a set of capability flags.
These flags can be combined using a Bitwise OR operation.

Refer to the enum FourCcInfoMask for the available flags:

enum FourCcInfoMask {
CanDecode = 0x01,
CanEncode = 0x02,
CanForward = 0x04,

}

Capability flags define specific functionalities, such as the
ability to decode, encode, or forward.

A FourCC key set to the wildcard character '*' acts as a catch-all
for any codec. When this wildcard key exists, it overrides the
flags set on properties for specific codecs. For example, if the
flag for the '*' property is set to FourCcInfoMask.CanForward, all
codecs will be forwarded regardless of individual flags set on
their specific properties.

e.g., 1
videoFourCcInfoMap = {
// can forward any video codec
'*': FourCcInfoMask.CanForward,

// can decode, encode, forward (see '*') VP9 codec
'vp09': FourCcInfoMask.CanDecode |

FourCcInfoMask.CanEncode,
}

capsEx number The value represents capability flags which can be combined via a
Bitwise OR to indicate which extended set of capabilities (i.e.,
beyond the legacy RTMP specification) are supported via enhanced

CapsExMask.Reconnect | CapsExMask.Multitrack

https://veovera.github.io/enhanced-rtmp/docs/legacy/rtmp-v1-0-spec.pdf#page=29
https://veovera.github.io/enhanced-rtmp/original-rtmp-related-specs/rtmp-v1-0-spec.pdf#page=29

RTMP. See enum CapsExMask for the enumerated values representing
the assigned bits. If the extended capabilities are expressed
elsewhere they will not appear here (e.g., fourCc, hdr or
VideoPacketType.Metadata support is not expressed in this
property).

enum CapsExMask {
Reconnect = 0x01 // See reconnect section
Multitrack = 0x02, // See multitrack section

}

As you can see, the client declares to the server what enhancements it supports.
The server responds with a command, either _result or _error, to indicate whether
the response is a result or an error. During the response, the server provides
some properties within an Object as one of the parameters. This is where the
server needs to state its support for enhanced RTMP. The server SHOULD state its
support via attributes such as videoFourCcInfoMap, capsEx, and similar
properties.

Action Message Format (AMF): AMF0 and AMF3
Action Message Format (AMF) is a compact binary format used to serialize
SCRIPTDATA. It has two specifications: [AMF0] and [AMF3]. AMF3 improves on AMF0
by optimizing the payload size on the wire. To understand the full scope of these
optimizations, please refer to the AMF0 and AMF3 specifications.

Supporting AMF3 in the RTMP and FLV is beneficial due to its optimization over
AMF0. Understanding the ecosystem is crucial before adding AMF3 support to RTMP
or FLV.

Enabling AMF3 in RTMP
To enable support for AMF3 in RTMP, the following steps are REQUIRED:

● Adding support for Data Message, Shared Object Message and Command Message
and their associated AMF3 message types (i.e., 15, 16 and 17).

● Adding support for the AMF3 set of possible type markers (see AMF3
specification section 3.1).

● Signaling in the connect command that the AMF3 encoding format is supported
in addition to AMF0.

RTMP has had AMF3 as part of its specification for some time now. During the
handshake, the client declares whether it has support for AMF3.

https://veovera.github.io/enhanced-rtmp/docs/legacy/video-file-format-v10-1-spec.pdf#page=80
https://veovera.github.io/enhanced-rtmp/docs/legacy/rtmp-v1-0-spec.pdf#page=24
https://veovera.github.io/enhanced-rtmp/docs/legacy/rtmp-v1-0-spec.pdf#page=24
https://veovera.github.io/enhanced-rtmp/docs/legacy/rtmp-v1-0-spec.pdf#page=24
https://veovera.github.io/enhanced-rtmp/docs/legacy/rtmp-v1-0-spec.pdf#page=24
https://veovera.github.io/enhanced-rtmp/docs/legacy/rtmp-v1-0-spec.pdf#page=24
https://veovera.github.io/enhanced-rtmp/docs/legacy/rtmp-v1-0-spec.pdf#page=24
https://veovera.github.io/enhanced-rtmp/docs/legacy/amf3-file-format-spec.pdf#page=5
https://veovera.github.io/enhanced-rtmp/docs/legacy/amf3-file-format-spec.pdf#page=5
https://veovera.github.io/enhanced-rtmp/docs/legacy/rtmp-v1-0-spec.pdf#page=29

Enabling AMF3 in FLV
Prior to Y2023, the FLV file format did not have AMF3 as part of its SCRIPTDATA
specification. To ensure support for AMF3 in FLV:

● Add a new FLV TagType 15 (i.e., in addition to TagType 18), which supports
SCRIPTDATA encoded via AMF3 (i.e., similar to the way Data Message is
handled).

Important AMF3-encoded Historical Specification
Clarification
Established, pre-enhanced RTMP, specifications state the following:

● Command Messages carry the AMF-encoded commands between the client and the
server. Message type values:

○ 20 for AMF0 encoding.
○ 17 for AMF3 encoding.

● Data Messages are sent by the client or server to send Metadata or user data
to the peer, including details such as creation time, duration, theme, etc.
Message type values:

○ 18 for AMF0 encoding.
○ 15 for AMF3 encoding.

● The message types 19 for AMF0 and 16 for AMF3 are reserved for Shared Object
events.

● AMF0 was extended to allow an AMF0 encoding context to be switched to AMF3.
A new type marker, avmplus-object-marker (byte 0x11), was added. The
presence of this marker signifies that the following value is encoded in
AMF3. Legacy AMF0 systems that haven't been updated to support AMF3 should
throw an unknown type error.

Unfortunately, the above is incomplete and may be somewhat unclear. To clarify,
in addition to the above:

● Object Encoding property in the Command Object of the connect command
indicates the type of serialization (a.k.a., encoding) supported by the
client or server:

○ A value of 0 (default and optional) indicates support for AMF0
encoding and message types of 18, 19 and 20.

○ A value of 3 indicates support for both AMF0 and AMF3 encoding and
message types of (18, 15), (19, 16) and (20, 17).

● Message payload for message types of 15, 16 and 17 starts with a format
selector byte. Currently, only format 0 is defined to indicate AMF0-encoded
values. It's possible to signal a switch to AMF3 serialization by prefixing
an AMF3 value with an AMF0 avmplus-object-marker (byte 0x11). The switch
isn't sticky, and parsing MUST return to AMF0 encoding mode once the AMF3
value is serialized. This means that every AMF3 encoded value MUST be
prefixed with an avmplus-object-marker (byte 0x11) as defined in AMF0.

https://veovera.github.io/enhanced-rtmp/docs/legacy/amf0-file-format-spec.pdf#page=8

Protocol Versioning
There is no need for a version bump within enhanced RTMP for either the RTMP
handshake sequence or the FLV header file version field. All of the enhancements
are triggered via the newly defined additions to the bitstream format which don’t
break legacy implementations. Enhanced RTMP is self describing in its
capabilities.

Documentation Versioning

Overview
This section outlines our standardized approach for versioning our specification
documentation. Effective versioning ensures consistency, enables users to
identify the latest version easily, and facilitates collaboration among team
members.

File Naming Convention
We name the documentation files with a clear identifier and the major version
number.

Example:
enhanced-rtmp-v2.pdf

Version Information Inside the Document
We include a dedicated section or metadata within each document to specify the
version details which includes the major version number, date, and stage of
development (alpha/beta/release).

Example:
Status: v2-2024-02-26-a1

Calendar Versioning Format Description
The format for versioning documents is structured as follows:

● v#-yyy-mm-dd-[a|b|r]#:
○ v#: Major version number for tracking the progression of the enhanced

RTMP development.

○ yyyy-mm-dd: Date when the document was updated.
○ [a|b|r]: Suffix to distinguish between the alpha, beta, and release

stage.
○ #: Minor version number for a particular date. Increments for multiple

versions on the same date.

This format provides a comprehensive overview of each version's status and
chronological order, facilitating effective tracking and management of the
enhanced RTMP specification development.

References

[AMF0]
Adobe Systems Inc. “Action Message Format – AMF 0”, June 2006,
<https://veovera.github.io/enhanced-rtmp/docs/legacy/amf0-file-format-spec.pdf>.

[AMF3]
Adobe Systems Inc. “Action Message Format – AMF 3”, June 2006,
<https://veovera.github.io/enhanced-rtmp/docs/legacy/amf3-file-format-spec.pdf>.

[DEPRECATED]
Deprecation,
<https://en.wikipedia.org/wiki/Deprecation>

[FLV]
“Adobe Flash Video File Format Specification, Version 10.1”, August 2010,
<https://veovera.github.io/enhanced-rtmp/docs/legacy/video-file-format-v10-1-spec
.pdf>.

[FourCC]
FourCC,
<https://en.wikipedia.org/wiki/FourCC>.

[LEGACY]
Legacy specifications for the RTMP solution,
<https://veovera.github.io/enhanced-rtmp/docs/legacy/>.

https://veovera.github.io/enhanced-rtmp/docs/legacy/amf0-file-format-spec.pdf
https://veovera.github.io/enhanced-rtmp/docs/legacy/amf3-file-format-spec.pdf
https://en.wikipedia.org/wiki/Deprecation
https://veovera.github.io/enhanced-rtmp/docs/legacy/video-file-format-v10-1-spec.pdf
https://veovera.github.io/enhanced-rtmp/docs/legacy/video-file-format-v10-1-spec.pdf
https://en.wikipedia.org/wiki/FourCC
https://veovera.github.io/enhanced-rtmp/docs/legacy/

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.

[RFC8174]
Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017,
<https://www.rfc-editor.org/info/rfc8174>.

[RTMP]
Parmar, H., Ed. and M. Thornburgh, Ed., "Adobe’s Real Time Messaging Protocol",
December 2012,
<https://veovera.github.io/enhanced-rtmp/docs/legacy/rtmp-v1-0-spec.pdf>.

Appendix

Document Revision History

Document Revision History
Date Comments

v2-2024-03-16-a1 1. The Enhanced RTMP Version 2 Alpha is now ready for public testing.

v2-2024-04-02-a1 1. Fixed pseudocode logic relating to VP8 sequence start and coded data.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://veovera.github.io/enhanced-rtmp/docs/legacy/rtmp-v1-0-spec.pdf

